IBX is an oxidation reagent that has surged into prominence in the last two decades. It is cost-effective, environmentally benign and readily prepared from o-iodobenzoic acid. However, its insolubility in common organic solvents and explosive attributes upon impact and heating are debilitating disadvantages. Development of modified IBXs,i.e., mIBXs, that exhibit improved solubility and enhanced reactivity, and obviate explosive attributes by a judicious manipulation of the structure of IBX has been an incessant endeavor. In this account, common organic solvent-soluble modified o-iodoxybenzoic acids (mIBXs) developed in our research group are collated with discussion of rationale underlying the design principles. Steric build-up around the iodoxolone moiety that is responsible for strong intermolecular interactions within the crystal lattice of IBX constitutes the key consideration in the design and development of modified λ5-iodanes that are reactive and sparingly soluble in common organic solvents. In situ generation of mIBXs from precursor iodo-acids in the presence of Oxone® permits employment of the latter as organocatalysts for facile oxidative transformations. Reactive mIBXs generated in situ from precursor modified iodoacids (mIAs, I(I)) in the presence of Oxone® may constitute unrivaled prospects for cost-effective oxidations. Applications of mIBXs, generated in situ or otherwise, for efficient oxidations are consolidated.