The heavy use of toxic and volatile solvents such as dimethylformamide (DMF) and dimethylsulfoxide (DMSO), in the chemical synthesis of perovskites is known to pose several sustainability challenges that significantly hinder their mass production for commercial applications. Herein, a polymerizable monomer solvent (4‐acryloylmorpholine, ACMO) is introduced that permits the growth and optical lithography of perovskite quantum dots (PQDs) through in situ polymerization. Morphological, structural, and optical analyses show that this polymerizable monomer can act both as a solvent to dissolve the perovskite precursor and as a monomer for photopolymerization reactions, allowing direct in situ fabrication and patterning of PQDs. By direct photolithography, colorful PQD patterns with high photoluminescent quantum yields, high resolution (minimum size of 5 µm), and excellent fluorescence uniformity, are successfully demonstrated. The work provides a new sustainable way of in situ patterning PQDs using polymerizable monomer solvents, leading to significant advances in various integrated applications, such as photonic, energy harvesting, and optoelectronic devices.