The cardiomyocyte circadian clock directly regulates multiple myocardial functions in a time-of-day-dependent manner, including gene expression, metabolism, contractility, and ischemic tolerance. These same biological processes are also directly influenced by modification of proteins by monosaccharides of O-linked -N-acetylglucosamine (O-GlcNAc). Because the circadian clock and protein O-GlcNAcylation have common regulatory roles in the heart, we hypothesized that a relationship exists between the two. We report that total cardiac protein O-GlcNAc levels exhibit a diurnal variation in mouse hearts, peaking during the active/awake phase. Genetic ablation of the circadian clock specifically in cardiomyocytes in vivo abolishes diurnal variations in cardiac O-GlcNAc levels. These time-ofday-dependent variations appear to be mediated by clock-dependent regulation of O-GlcNAc transferase and O-GlcNAcase protein levels, glucose metabolism/uptake, and glutamine synthesis in an NAD-independent manner. We also identify the clock component Bmal1 as an O-GlcNAc-modified protein.Increasing protein O-GlcNAcylation (through pharmacological inhibition of O-GlcNAcase) results in diminished Per2 protein levels, time-of-day-dependent induction of bmal1 gene expression, and phase advances in the suprachiasmatic nucleus clock. Collectively, these data suggest that the cardiomyocyte circadian clock increases protein O-GlcNAcylation in the heart during the active/ awake phase through coordinated regulation of the hexosamine biosynthetic pathway and that protein O-GlcNAcylation in turn influences the timing of the circadian clock.Circadian clocks have emerged as critical regulators of energy metabolism (1, 2). Animal models wherein components of these cell autonomous mechanisms are genetically manipulated invariably exhibit altered energy balance, resulting in overt metabolic phenotypes (e.g. obesity or leanness). This concept is exemplified when either Clock or Bmal1 (two transcription factors at the core of the mammalian clock) are disrupted; Clock⌬19 mutant mice are obesity-prone, whereas Bmal1 null mice are lean (3, 4). Appreciation for links between circadian clocks and metabolism has grown further through demonstration that perturbations in metabolism (e.g. changes in nutrient availability, models of obesity, and diabetes mellitus, etc.) in turn influence the clock mechanism (5-7). Collectively, these observations have fueled identification of a number of posttranslational mediators that facilitate the interdependence of circadian clocks with metabolism. These include phosphorylation, ubiquitination, acetylation, and ribosylation of critical clock and/or metabolic components in time-of-day-dependent manners (1, 8 -14).Defining the role of a specific cell autonomous circadian clock in metabolic regulation through the use of animal models wherein clock components are genetically altered in a ubiquitous fashion is often hampered by the fact that time-of-day-dependent rhythms are altered at multiple levels (e.g. behavioral, neurohum...