Interferons (IFNs) are a family of secreted proteins with antiviral, antiproliferative and immunomodulatory activities. The di erent biological actions of IFN are believed to be mediated by the products of speci®cally induced cellular genes in the target cells. The promyelocytic leukaemia (PML) protein localizes both in the nucleoplasm and in matrix-associated multi-protein complexes known as nuclear bodies (NBs). PML is essential for the proper formation and the integrity of the NBs. Modi®cation of PML by the Small Ubiquitin MOdi®er (SUMO) was shown to be required for its localization in NBs. The number and the intensity of PML NBs increase in response to interferon (IFN). Inactivation of the IFN-induced PML gene by its fusion to retinoic acid receptor alpha alters the normal localization of PML from the punctuate nuclear patterns of NBs to microdispersed tiny dots and results in uncontrolled growth in Acute Promyelocytic Leukaemia. The NBs-associated proteins, PML, Sp100, Sp140, Sp110, ISG20 and PA28 are induced by IFN suggesting that nuclear bodies could play a role in IFN response. Although the function of PML NBs is still unclear, some results indicate that they may represent preferential targets for viral infections and that PML could play a role in the mechanism of the antiviral action of IFNs. Viruses, which require the cellular machinery for their replication, have evolved di erent ways to counteract the action of IFN by inhibiting IFN signalling, by blocking the activities of speci®c antiviral mediators or by altering PML expression and/or localization on nuclear bodies. Oncogene (2001) 20, 7274 ± 7286.