We propose a facile room-temperature synthesis of a metal-organic framework (MOF) with a bimodal mesoporous structure (3.9 and 17-28 nm) in an ionic liquid (IL)/ethylene glycol (EG) mixture. The X-ray diffraction analysis reveals that MOF formation can be efficiently promoted by the presence of the EG/IL interface at room temperature. The MOFs with mesoporous networks are characterized by SEM and TEM. The formation mechanism of the mesoporous MOF in EG/IL mixture is investigated. It is proposed that the EG nanodroplets in the IL work as templates for the formation of the large mesopores. The as-synthesized mesoporous metal-organic framework is an effective and reusable heterogeneous catalyst to catalyze the aerobic oxidation of benzylic alcohols.