This work highlights the modeling and simulation of a micro-grid connected renewable energy system. It comprises of wind turbine (WT) based on doubly fed induction generator (DFIG), photovoltaic generator (PV), fuel cell (FC) generator, a Hydrogen tank, a water electrolyzer used for long-term storage, and a battery bank energy storage system (BBESS) utilized for short-term storage. In this paper, a global control strategy and an energy management strategy are proposed for the overall system. This strategy consists in charging the BBESS and producing hydrogen from the water electrolyzer in case of power excess provided from WT-DFIG and photovoltaic generators. Therefore, the FC and the BBESS will be used as a backup generator to supply the demand required power, when the WT-DFIGs and the PV energy are deficient. The effectiveness of this contribution is verified through computer simulations under Matlab/Simulink, where very satisfactory results are obtained.