Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
REPORT DATE
SPONSOR/MONITOR'S REPORT NUMBER(S)
DISTRIBUTION/AVAILABILITY STATEMENTApproved for public release; distribution unlimited
SUPPLEMENTARY NOTESThe original document contains color images.
ABSTRACTThis report is a review of additive/subtractive manufacturing techniques in Europe. Otherwise known as Solid Freeform Fabrication (SFF), this approach has resided largely in the prototyping realm, where the methods of producing complex freeform solid objects directly from a computer model without part-specific tooling or knowledge started. But these technologies are evolving steadily and are beginning now to encompass related systems of material addition, subtraction, assembly, and insertion of components made by other processes. Furthermore, these various additive/subtractive processes are starting to evolve into rapid manufacturing techniques for mass-customized products, away from narrowly defined rapid prototyping. Taking this idea far enough down the line, and several years hence, a radical restructuring of manufacturing as we know it could take place. Not only would the time to market be slashed, manufacturing itself would move from a resource base to a knowledge base and from mass production of single use products to mass customized, high value, life cycle products.
FOREWORDWe have come to know that our ability to survive and grow as a nation to a very large degree depends upon our scientific progress. Moreover, it is not enough simply to keep abreast of the rest of the world in scientific matters. We must maintain our leadership. 1 President Harry Truman spoke those words in 1950, in the aftermath of World War II and in the midst of the Cold War. Indeed, the scientific and engineering leadership of the United States and its allies in the twentieth century played key roles in the successful outcomes of both World War II and the Cold War, sparing the world the twin horrors of fascism and totalitarian communism, and fueling the economic prosperity that followed. Today, as the United States and its allies once again find themselves at war, President Truman's words ring as true as they did a half century ago. The goal set out in the Truman Administration of maintaining leadership in science has re...