In this thesis, we characterized megasynthases such as fatty acid synthases (FASs) and polyketide synthases. The obtained insights into structure and function were used to engineer such systems to produce new-to-nature compounds. The in vitro characterization of megasynthases requires reproducible access to these enzymes in high quality. Therefore, we established purification strategies for the yeast FAS and the methylsalicylic acid synthase (MSAS) from Saccharopolyspora erythraea (SerMSAS) and applied the latter one on MSAS from Penicillium patulum (PenPaMSAS) and on 6-deoxyerythronolide B synthase (DEBS) module 6. With the purified samples, we were able to obtain initial structural data for SerMSAS and solve the complete structure of the yeast FAS (PDB: 6TA1). On the example of the yeast FAS, we could show that the sample can suffer from adsorption to the water-air interface during the grid preparation for electron microscopy and presented how the use of graphene-based grids can overcome this problem. The combined structural and functional analysis of the yeast FAS showed that the structural domains trimerization module and dimerization module 2 are not essential for the assembly of the whole system. Therefore, they can potentially be used for domain exchange approaches. The in-depth functional analysis of SerMSAS revealed that not SerMSAS itself releases the product, but a 3-oxoacyl-(acyl-carrier protein) synthase like enzyme within the gene cluster transfers 6-methyl salicylic acid from SerMSAS to another carrier protein for subsequent modifications. In contrast, we showed that PenPaMSAS can release its product by hydrolysis and that non-native substrates can be incorporated although at significantly slower turnover rates compared to the native starter substrate. Our further investigation demonstrated that the substrate specificity of the acyltransferase (AT) is a critical factor for the incorporation of non-native substrates. With the insight from the functional and structural characterization, we engineered megasynthases for the biosynthesis of natural product derivatives. We targeted the AT of PenPaMSAS for active site mutagenesis and discovered a mutant which can transfer non-native substrates significantly faster (~200-300%). Additionally, the malonyl/acetyl transferase (MAT) of the mammalian FAS was used as a promising target for protein engineering because of its previously reported properties including polyspecificity, fast transfer kinetics, robustness, and plasticity. We showed that the MAT can transfer fluorinated substrates and accept the acyl carrier protein of DEBS module 6. By exchanging the substrate specific AT of DEBS with the polyspecific MAT of the mammalian FAS, we demonstrated an efficient DEBS/FAS hybrid and an optimal truncation site for the applied ATs. In contrast to the wild type system, the DEBS/FAS enzyme was able to synthesize demethylated and fluorinated derivatives. The production and purification of a fluoro-methyl-disubstituted polyketide was of particular interest, as it has a high potential for the generation of new drugs and shows the potential of protein engineering. Furthermore, the incorporation of the disubstituted substrate had important implication in the mechanistic details of the ketosynthase-mediated C-C bond formation.