Bacillus anthracis, a Gram-positive facultative anaerobe and the causative agent of anthrax, multiplies to extraordinarily high numbers in vertebrate blood, resulting in considerable heme exposure. Heme is an essential nutrient and the preferred iron source for bacteria during vertebrate colonization, but its high redox potential makes it toxic in excess. To regulate heme homeostasis, many Gram-positive bacteria, includingB. anthracis, rely on the two-component signaling system HssRS. HssRS comprises the heme sensing histidine kinase HssS, which modulates the activity of the HssR transcription factor to enable bacteria to circumvent heme toxicity. However, the regulation of the HssRS system remains unclear. Here we identify FapR, the transcriptional regulator of fatty acid biosynthesis, as a key factor in HssRS function. FapR plays an important role in maintaining membrane integrity and the localization of the histidine kinase HssS. Specifically, disruption offapRleads to increased membrane rigidity, which hinders the penetration of HssRS inducers, resulting in the inactivation of HssRS. Furthermore, deletion offapRaffects the loading of HssS onto the cell membrane, compromising its heme sensing function and subsequently reducing endogenous heme biosynthesis. These findings shed light on the molecular mechanisms governing bacterial adaptation to heme stress and provide potential targets for antimicrobial intervention strategies.IMPORTANCEUnderstanding the mechanisms by whichB. anthracisregulates heme homeostasis is crucial for developing new strategies to combat anthrax, a serious disease affecting both humans and animals. This study uncovers the role of the transcriptional regulator FapR in maintaining membrane integrity and facilitating the proper function of the HssRS two-component signaling system, which is essential for managing heme toxicity inB. anthracis, as well as other Gram-positive pathogens. By elucidating the connection between FapR and HssRS, our findings provide new insights into the molecular adaptation of bacteria to heme stress and expand our knowledge of bacterial physiology and pathogenicity. More importantly, targeting the regulatory pathways involved in heme sensing and homeostasis presents a promising approach for developing novel therapeutics against anthrax and potentially other bacterial infections that rely on similar mechanisms.