The product selectivity of many heterogeneous electrocatalytic processes is profoundly affected by the liquid side of the electrocatalytic interface. The electrocatalytic reduction of CO to hydrocarbons on Cu electrodes is a prototypical example of such a process. However, probing the interactions of surface-bound intermediates with their liquid reaction environment poses a formidable experimental challenge. As a result, the molecular origins of the dependence of the product selectivity on the characteristics of the electrolyte are still poorly understood. Herein, we examined the chemical and electrostatic interactions of surfaceadsorbed CO with its liquid reaction environment. Using a series of quaternary alkyl ammonium cations (methyl 4 N + , ethyl 4 N + , propyl 4 N + , and butyl 4 N + ), we systematically tuned the properties of this environment. With differential electrochemical mass spectrometry (DEMS), we show that ethylene is produced in the presence of methyl 4 N + and ethyl 4 N + cations, whereas this product is not synthesized in propyl 4 N + -and butyl 4 N + -containing electrolytes. Surface-enhanced infrared absorption spectroscopy (SEIRAS) reveals that the cations do not block CO adsorption sites and that the cation-dependent interfacial electric field is too small to account for the observed changes in selectivity.
However, SEIRAS shows that an intermolecular interaction between surface-adsorbed CO and interfacial water is disrupted in the presence of the two larger cations. This observation suggests that this interaction promotes the hydrogenation of surface-bound CO to ethylene. Our study provides a critical molecular-level insight into how interactions of surface species with the liquid reaction environment control the selectivity of this complex electrocatalytic process.hydrogen bonding | cation effects | electrocatalysis | carbon dioxide reduction | catalytic selectivity T he reaction environment profoundly impacts the kinetics of many chemical processes. Examples include the influence of the solvating environment on the rates of electron transfer (1), isomerization (2), peptide folding (3), and organic reactions (4), as well as the sensitivity of enzymatic catalysis to changes in the molecular structure of the active site (5). For a chemical process that can lead to multiple reaction products, solvent effects can impact the relative rates of product formation and therefore the product selectivity (6, 7). These effects, which can have complex energetic and/or dynamical origins (1,8,9), are fundamentally rooted in intermolecular interactions between the reactants and their environment. In the context of heterogeneous electrocatalysis, the reaction environment is asymmetric; i.e., reactants at the electrochemical interface are interacting with the solid electrode and the liquid electrolyte. Understanding the interactions of intermediates with their interfacial environment is essential for controlling the reaction paths of electrocatalytic processes that exhibit poor product selectivity.The reduc...