Directional Polarization of a Ferroelectric Intermediate Layer Inspires a Built‐In Field in Si Anodes to Regulate Li+ Transport Behaviors in Particles and Electrolyte
Ming Liu,
Wenqiang Xu,
Shigang Liu
et al.
Abstract:The silicon (Si) anode is prone to forming a high electric field gradient and concentration gradient on the electrode surface under high‐rate conditions, which may destroy the surface structure and decrease cycling stability. In this study, a ferroelectric (BaTiO3) interlayer and field polarization treatment are introduced to set up a built‐in field, which optimizes the transport mechanisms of Li+ in solid and liquid phases and thus enhances the rate performance and cycling stability of Si anodes. Also, a fast… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.