It is urgent and significant for the further development of superhydrophobic materials to exploit a facile, low-cost, scalable, and eco-friendly method for the manufacture of superhydrophobic materials with self-cleaning, antifouling, directional transportation, and other characteristics. Herein, an outstanding superhydrophobic material composed of a flexible microconvex aramid paper substrate, micron-scale cone-shaped copper, micro−nanoscale dendritic copper oxide, and hydrophobic copper stearate film has been successfully constructed through delicate architectural design and a convenient preparation approach. Based on the microstructure evolution and composition analysis results, it is revealed that the cone-shaped copper was etched into a dendritic copper oxide structure step by step from the top to bottom and from the outside to inside in an alkaline liquid environment. Moreover, by virtue of the compositional features and structural characteristics, the constructed superhydrophobic material showcased a high contact angle (CA), low sliding angle (SA), high porosity, low surface free energy, and adhesion work. Meanwhile, the dendritic microstructure analysis, the calculation of solid−liquid interfacial tension, and the force analysis of water droplets jointly revealed the mechanism of the bounce and merged bounce of water droplets. Finally, this superhydrophobic material has the functions of self-cleaning, antifouling, and directional transportation, especially by controlling the deformation of the material to realize the transportation of water droplets in a specified direction.