Functional additives have been widely utilized for the membrane structure modulation and performance improvement during the nonsolvent-induced phase separation process, but the resulted membranes easily suffer from additives' inhomogeneous dispersity and compatibility with the polymer matrix. Herein, a facile and robust strategy, i.e., one-step waterinduced phase separation, was proposed for the preparation of polyelectrolytes-contained composite membranes. Polyanion (dopamine modified polyacrylic acid) and polycation (quaternized chitosan paired with bis(trifluoromethane-sulfonyl)imide) were first premixed in dimethyl sulfoxide and used as polyelectrolyte additives in a polysulfone (PSF) solution, and then a uniform PSFbased casting solution was readily obtained. During the solvent−water exchange process, polymer solidification and polyelectrolyte complexation were simultaneously triggered, in situ generating a polyelectrolyte complex fixed within the membrane matrix. Ultrafiltration membranes with hierarchical structures were notably tailored through altering the concentration, molecular weight, and type of polyelectrolytes. The obtained membrane exhibited a water flux of 672 L•m −2 •h −1 , three times over the raw PSF membrane, while almost maintaining high bovine serum albumin (BSA) rejection. This work paves a straightforward and convenient path for the preparation of composite membranes with tunable architecture and properties.