This special issue discusses recent advances in computer simulation studies of crystal growth. Crystal growth is a key to innovation in science and technology. Owing to recent progress in computer performance, computer simulation studies of crystal growth have become increasingly important. This special issue covers a variety of simulation methods, including the Monte Carlo, molecular dynamics, first-principles, multiscale, and continuum simulation methods, which are used for studies on the fundamentals and applications of crystal growth and related phenomena for different materials, such as hard-sphere systems, ice, organic crystals, semiconductors, and graphene.