In glaucoma, initial visual field scotomas can be peripheral or central, whereas central scotomas are more severe and can disrupt daily activities. Individual anatomical features may influence the distribution of retinal nerve fibers and the starting site of visual field defects in glaucoma. In this study, we aimed to correlate myopia and hyperopia or anatomical variation of the disk-fovea angle with initial central or peripheral lesions in the visual field. Methods: This cross-sectional study included patients with primary open-angle glaucoma divided into a group of isolated central or peripheral scotomas in the visual field with MD > or equal to -6 dB, correlating with the degree of ametropia and anatomical variations, such as the disk-fovea angle. Results: We included 52 patients with glaucoma. Of 20 myopic patients, 6 (30%) had central scotomas, and 14 (70%) had peripheral scotomas. Of 32 hyperopic patients, 12 (37.5%) had central scotomas, and 20 (63.5%) had peripheral scotomas. Regarding the disk-fovea angle, 25 eyes had the disk-fovea angle of < -7°, with 9 (36%) eyes presenting with central scotoma, and 27 eyes presented with the disk-fovea angle of > -7°, with 9 (33.3%) eyes presenting with a central scotoma. Conclusion: This study showed an association between ametropia and scotomas on the perimetry in patients with glaucoma. Patients had a higher incidence of peripheral scotomas, but hyperopic patients had a greater number of central scotomas than myopic patients, and myopic patients had more peripheral scotomas than hyperopic patients. The disk-fovea angle was not correlated with scotomas in initial glaucoma.