Abstract. We proposed a new design method for single freeform reflective (or refractive) surface tailored to redistribute the radiant flux onto a prescribed illumination pattern. Unlike the conventional optimization approaches based on the grid mapping, in this study we estimated each segmental freeform surface by locally solving a second-order differential equation, which formulates the energy transportation between each domain cell. With finite element method via Hermite element, we validated a series of smooth reflective/refractive surfaces to reallocate the radiant flux from a point source toward a target plane with specific patterns. The proposed technique offers a large flexibility by varying the vectors of each ray with multiple refraction (or reflection), which imposes no restriction on the target distribution, collective solid angle, or even target topography.