We consider a time‐dependent and a steady linear convection‐diffusion‐reaction equation whose coefficients are nonconstant. Boundary conditions are mixed (Dirichlet and Robin–Neumann) and nonhomogeneous. Both the unsteady and the steady problem are approximately solved by a combined finite element–finite volume method: the diffusion term is discretized by Crouzeix–Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the unsteady case, the implicit Euler method is used as time discretization. The
L
2
(
H
1
)
‐ and the
L
∞
(
L
2
)
‐error in the unsteady case and the H1‐error in the steady one are estimated against the data, in such a way that no parameter enters exponentially into the constants involved. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1591–1621, 2016