Abstract:In this paper, we study spatially semi‐discrete and fully discrete schemes to numerically solve a hyperbolic variational inequality, with discontinuous Galerkin (DG) discretization in space and finite difference discretization in time. Under appropriate regularity assumptions on the solution, a unified error analysis is established for four DG schemes, which reaches the optimal convergence order for linear elements. A numerical example is presented, and the numerical results confirm the theoretical error estim… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.