Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Measuring the time-course of neural events that make up cognitive processing is crucial to understand the relation between brain and behavior. To this aim, we formulated a method to discover a trial-wise sequence of events in multivariate neural signals such as electro- or magneto-encephalograpic (E/MEG) recordings. This sequence of events is assumed to be represented by multivariate patterns in neural time-series, with inter-event durations following probability distributions. By estimating event-specific multivariate patterns, and between-event duration distributions, the method allows to recover the by-trial onsets of brain responses. We demonstrate the properties and robustness of this hidden multivariate pattern (HMP) method through simulations, including robustness to low signal-to-noise ratio, as typically observed in EEG recordings. The applicability of HMP is illustrated using previously published data from a speed-accuracy trade-off task. We show how HMP provides, for any experiment or condition, an estimate of the number of events, the sensors contributing to each event (e.g. EEG scalp topography), and the durations between each event. Traditional exploration of tasks' cognitive architectures can thus be enhanced by HMP estimates.
Measuring the time-course of neural events that make up cognitive processing is crucial to understand the relation between brain and behavior. To this aim, we formulated a method to discover a trial-wise sequence of events in multivariate neural signals such as electro- or magneto-encephalograpic (E/MEG) recordings. This sequence of events is assumed to be represented by multivariate patterns in neural time-series, with inter-event durations following probability distributions. By estimating event-specific multivariate patterns, and between-event duration distributions, the method allows to recover the by-trial onsets of brain responses. We demonstrate the properties and robustness of this hidden multivariate pattern (HMP) method through simulations, including robustness to low signal-to-noise ratio, as typically observed in EEG recordings. The applicability of HMP is illustrated using previously published data from a speed-accuracy trade-off task. We show how HMP provides, for any experiment or condition, an estimate of the number of events, the sensors contributing to each event (e.g. EEG scalp topography), and the durations between each event. Traditional exploration of tasks' cognitive architectures can thus be enhanced by HMP estimates.
Measuring the time-course of neural events that make up cognitive processing is crucial to understand the relation between brain and behavior. To this aim, we formulated a method to discover a trial-wise sequence of events in multivariate neural signals such as electro- or magneto-encephalograpic (E/MEG) recordings. This sequence of events is assumed to be represented by multivariate patterns in neural time-series, with the by-trial inter-event intervals following probability distributions. By estimating event-specific multivariate patterns, and between-event time interval distributions, the method allows to recover the by-trial location of brain responses. We demonstrate the properties and robustness of this hidden multivariate pattern (HMP) method through simulations, including robustness to low signal-to-noise ratio, as typically observed in EEG recordings. The applicability of HMP is illustrated using three previously published datasets. We show how HMP provides, for any experiment or condition, an estimate of the number of events, the sensors contributing to each event (e.g. EEG scalp topography), and the intervals between each event. Traditional exploration of tasks’ cognitive structures and electrophysiological analyses can thus be enhanced by HMP estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.