2016
DOI: 10.1007/978-3-319-31204-0_12
|View full text |Cite
|
Sign up to set email alerts
|

Discovering Potential Clinical Profiles of Multiple Sclerosis from Clinical and Pathological Free Text Data with Constrained Non-negative Matrix Factorization

Abstract: Abstract. Constrained non-negative matrix factorization (CNMF) is an effective machine learning technique to cluster documents in the presence of class label constraints. In this work, we provide a novel application of this technique in research on neuro-degenerative diseases. Specifically, we consider a dataset of documents from the Netherlands Brain Bank containing free text describing clinical and pathological information about donors affected by Multiple Sclerosis. The goal is to use CNMF for identifying c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2018
2018
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 21 publications
0
0
0
Order By: Relevance