“…In both cases, the inputs and genome of the minimization functions are the initial values of the kinematic parameters ππππππππππ ππ defined as: ππππππππππ ππ = (0.195, 0.195, 0.195, 0.148, 0.148, 0.148, 60.000, 180.000, 300.000) (15) And the upper (ππππππππππ π’π’ππ ) and lower (ππππππππππ ππππ ) bounds proposed to guarantee the physical interpretation of the results: ππππππππππ π’π’ππ = (0.220, 0.220, 0.220, 0.158, 0.158, 0.158, 62.000, 182.000, 302.000) ππππππππππ ππππ = (0.170, 0.170, 0. 0.170, 0.138, 0.138, 0.138, 58.000, 178.000, 298.000) (16) The specific search functions used in this paper are: Fmin search function. The implementation of a gradient search nonlinear minimization to calibrate the odometry is based on the Matlab function fmincon.m, which is a nonlinear multivariable function that attempts to iteratively find the local unconstrained minimum of an objective multivariate cost function summarized in a value πΆπΆπΆπΆ evaluated within specific bounds.…”