Mammalian flavin-containing monooxygenases, which are difficult to obtain and study, play a major role in detoxifying various xenobiotics. To provide alternative biocatalytic tools to generate flavin-containing monooxygenases (FMO)-derived drug metabolites, a collection of microbial flavoprotein monooxygenases, sequence-related to human FMOs, was tested for their ability to oxidize a set of xenobiotic compounds. For all tested xenobiotics [nicotine, lidocaine, 3-(methylthio)aniline, albendazole, and fenbendazole], one or more monooxygenases were identified capable of converting the target compound. Chiral liquid chromatography with tandem mass spectrometry analyses of the conversions of 3-(methylthio) aniline, albendazole, and fenbendazole revealed that the respective sulfoxides are formed in good to excellent enantiomeric excess (e.e.) by several of the tested monooxygenases. Intriguingly, depending on the chosen microbial monooxygenase, either the (R)-or (S)-sulfoxide was formed. For example, when using a monooxygenase from Rhodococcus jostii the (S)-sulfoxide of albendazole (ricobendazole) was obtained with a 95% e.e. whereas a fungal monooxygenase yielded the respective (R)-sulfoxide in 57% e.e. For nicotine and lidocaine, monooxygenases could be identified that convert the amines into their respective N-oxides. This study shows that recombinantly expressed microbial monooxygenases represent a valuable toolbox of mammalian FMO mimics that can be exploited for the production of FMO-associated xenobiotic metabolites.