Chromogranin A knockout (Chga-KO) mice exhibit enhanced insulin sensitivity despite obesity. Here, we probed the role of the chromogranin A-derived peptide pancreastatin (PST: CHGA ) by investigating the effect of diet-induced obesity (DIO) on insulin sensitivity of these mice. We found that on a high-fat diet (HFD), Chga-KO mice (KO-DIO) remain more insulin sensitive than wild-type DIO (WT-DIO) mice. Concomitant with this phenotype is enhanced Akt and AMPK signaling in muscle and white adipose tissue (WAT) as well as increased FoxO1 phosphorylation and expression of mature Srebp-1c in liver and downregulation of the hepatic gluconeogenic genes, Pepck and G6pase. KO-DIO mice also exhibited downregulation of cytokines and proinflammatory genes and upregulation of anti-inflammatory genes in WAT, and peritoneal macrophages from KO mice displayed similarly reduced proinflammatory gene expression. The insulin-sensitive, anti-inflammatory phenotype of KO-DIO mice is masked by supplementing PST. Conversely, a PST variant peptide PSTv1 (PST-ND3: CHGA 276-301 ), lacking PST activity, simulated the KO phenotype by sensitizing WT-DIO mice to insulin. In summary, the reduced inflammation due to PST deficiency prevented the development of insulin resistance in KO-DIO mice. Thus, obesity manifests insulin resistance only in the presence of PST, and in its absence obesity is dissociated from insulin resistance.The chromogranin A (human CHGA/mouse Chga) proprotein (1-4) undergoes proteolysis and gives rise to bioactive peptides including the antihypertensive catestatin (CHGA 352-372 ) (5-8) and the diabetogenic pancreastatin (PST: CHGA 250-301 ) (9-12). We have shown that Chgadeficient mice (Chga-KO) are obese, hyperadrenergic, and hypertensive. They display elevated levels of circulating leptin and catecholamines but lower levels of interleukin (IL)-6 and Mcp-1 (11,13-16). Despite these abnormalities, Chga-KO mice exhibit enhanced insulin sensitivity (11), a phenotype masked by supplementing PST. PST regulates hepatic insulin signaling through conventional (c) PKC and Srebp-1c (11). Increased plasma PST levels in diabetic populations correlate with insulin resistance (10). Similarly, increased circulating levels of PST in diet-induced obesity (DIO) and db/ db mice are associated with insulin resistance. Despite high levels of plasma leptin and catecholamines, Chga-KO mice are obese owing to peripheral leptin and catecholamine resistance (17).Since normal chow diet (NCD)-fed Chga-KO mice displayed increased insulin sensitivity (11), we hypothesized that Chga-KO mice may be able to maintain insulin sensitivity when exposed to the dysglycemic stress of a highfat diet (HFD). The hallmarks of insulin resistance in DIO mice are obesity, hyperinsulinemia, and increased inflammation (18)(19)(20)(21)(22). Suppression of inflammation in DIO mice can improve insulin sensitivity (23-25). For example, rosiglitazone can improve inflammation and insulin sensitivity in DIO mice without reducing obesity significantly (23-25). Chga-KO mice are...