Aurora kinases play key roles in regulating centrosome maturation, mitotic spindle formation, and cytokinesis during cell division, and are considered promising drug targets due to their frequent overexpression in a variety of human cancers. SNS-314 is a selective and potent pan Aurora inhibitor currently in a dose escalation phase 1 clinical trial for the treatment of patients with advanced solid tumors. Here, we report the antiproliferative effects of SNS-314 in combination with common chemotherapeutics in cell culture and xenograft models. The HCT116 colorectal carcinoma cell line, with intact or depleted p53 protein levels, was treated with SNS-314 and a cytotoxic chemotherapeutic from a panel comprised of gemcitabine, 5-fluorouracil (5-FU), carboplatin, daunomycin, SN-38 (the active metabolite of irinotecan), docetaxel, and vincristine. Combinations were administered under either concurrent or sequential schedules. SNS-314 has predominantly additive effects when administered concurrently with commonly used anticancer agents. Sequential administration of SNS-314 with chemotherapeutic compounds showed additive antiproliferative effects with carboplatin, gemcitabine, 5-FU, daunomycin, and SN-38, and synergy was observed in combination with gemcitabine, docetaxel, or vincristine. The most profound antiproliferative effects were observed with sequential administration of SNS-314 followed by docetaxel or vincristine. In vivo, SNS-314 potentiated the antitumor activity of docetaxel in xenografts. Both the in vitro synergies observed between SNS-314 and agents that target the mitotic spindle and the potentiation seen with docetaxel in vivo are consistent with a mechanism of action in which Aurora inhibition bypasses the mitotic spindle assembly checkpoint and prevents cytokinesis, augmenting subsequent spindle toxinmediated mitotic catastrophe and cell death. [Mol Cancer Ther 2009;8(4):930-9]