Lichens are symbiotic organisms which are composed fungi and algae and/or cyanobacteria. They produce a variety of characteristic secondary metabolites. Such substances have various biological properties including antimicrobial, antiviral, and antitumor activities. Angiogenesis, the growth of new vessels from pre-existing vessels, contributes to numerous diseases including cancer, arthritis, atherosclerosis, infectious, and immune disorders. Antiangiogenic therapy is a promising approach for the treatment of such diseases by inhibiting the new vessel formation. Technological advances have led to the development of various antiangiogenic agents and have made possible antiangiogenic therapy in many diseases associated with angiogenesis. Some lichens and their metabolites are used in the drug industry, but many have not yet been tested for their antiangiogenic effects. The cytotoxic and angiogenic capacities of lichen-derived small molecules have been demonstrated in vivo and in vitro experiments. Therefore, some of them may be used as antiangiogenic agents in the future. The secondary compounds of lichen whose antiangiogenic effect has been studied in the literature are usnic acid, barbatolic acid, vulpinic acid, olivetoric acid, emodin, secalonic acid D, and parietin. In this article, we review the antiangiogenic effects and cellular targets of these lichen-derived metabolites.