As a hallmark for cancer treatment, PARP inhibitors can effectively kill tumor cells with a mechanism termed as synthetic lethality, and are used to treat various cancers including ovarian, breast, prostate, pancreatic and others with DNA repair defects. However, along with the clinical trials progressing, the limitations of PARP-1 inhibitors became apparent such as limited activity and indications. Studies have shown that a molecule that is able to simultaneously restrict two or more targets involving in tumors is more effective in preventing and treating cancers due to the enhancing synergies. In order to make up for the shortcomings of PARP inhibitors, reduce the development cost and overcome the pharmacokinetic defects, multiple works were carried out to construct dual targeting PARP inhibitors for cancer therapy. Herein, they were summarized briefly.