The synthesis of advanced materials at high pressures has been an area of growing research interest for several decades. This article is the third in a three-part series that reviews Laser Materials Processing Within Diamond Anvil Cells (L-DACs). Part III focuses on the practice of Laser Reactive Synthesis Within Diamond Anvil Cells (LRS-DAC). During LRS-DAC processing, chemicals are precompressed within diamond anvil cells, then microscale chemical reactions are induced by focused laser beams. The method is distinguished from the well-known Laser-Heated Diamond Anvil Cell (LH-DAC) technique (see Part I) through the existence of chemical precursors (reactants), end-products, and quantifiable changes in chemical composition upon reaction. LRS-DAC processing provides at least three new degrees of freedom in the search for advanced materials (beyond adjusting static pressures and temperatures), namely: laser-excitation/cleavage of chemical bonds, time-dependent reaction kinetics via pulsed lasers, and pressure-dependent chemical kinetics. All of these broaden the synthetic phase space considerably. Through LRS-DAC experimentation, it is possible to obtain increased understanding of high-pressure chemical kinetics—and even the nature of chemical bonding itself. Here, LRS-DAC experimental methods are reviewed, along with the underlying chemistry/physics of high-pressure microchemical reactions. A chronology of key events influencing the development of LRS-DAC systems is provided, together with a summary of novel materials synthesised, and unusual chemical reactions observed. Current gaps in knowledge and emerging opportunities for further research are also suggested.