Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The most distant galaxies detected were seen when the Universe was a scant 5% of its current age. At these times, progenitors of galaxies such as the Milky Way were about 10,000 times less massive. Using the James Webb Space Telescope (JWST) combined with magnification from gravitational lensing, these low-mass galaxies can not only be detected but also be studied in detail. Here we present JWST observations of a strongly lensed galaxy at zspec = 8.296 ± 0.001, showing massive star clusters (the Firefly Sparkle) cocooned in a diffuse arc in the Canadian Unbiased Cluster Survey (CANUCS)1. The Firefly Sparkle exhibits traits of a young, gas-rich galaxy in its early formation stage. The mass of the galaxy is concentrated in 10 star clusters (49–57% of total mass), with individual masses ranging from 105M⊙ to 106M⊙. These unresolved clusters have high surface densities (>103M⊙ pc−2), exceeding those of Milky Way globular clusters and young star clusters in nearby galaxies. The central cluster shows a nebular-dominated spectrum, low metallicity, high gas density and high electron temperature, hinting at a top-heavy initial mass function. These observations provide our first spectrophotometric view of a typical galaxy in its early stages, in a 600-million-year-old Universe.
The most distant galaxies detected were seen when the Universe was a scant 5% of its current age. At these times, progenitors of galaxies such as the Milky Way were about 10,000 times less massive. Using the James Webb Space Telescope (JWST) combined with magnification from gravitational lensing, these low-mass galaxies can not only be detected but also be studied in detail. Here we present JWST observations of a strongly lensed galaxy at zspec = 8.296 ± 0.001, showing massive star clusters (the Firefly Sparkle) cocooned in a diffuse arc in the Canadian Unbiased Cluster Survey (CANUCS)1. The Firefly Sparkle exhibits traits of a young, gas-rich galaxy in its early formation stage. The mass of the galaxy is concentrated in 10 star clusters (49–57% of total mass), with individual masses ranging from 105M⊙ to 106M⊙. These unresolved clusters have high surface densities (>103M⊙ pc−2), exceeding those of Milky Way globular clusters and young star clusters in nearby galaxies. The central cluster shows a nebular-dominated spectrum, low metallicity, high gas density and high electron temperature, hinting at a top-heavy initial mass function. These observations provide our first spectrophotometric view of a typical galaxy in its early stages, in a 600-million-year-old Universe.
The study of the Milky Way is living a golden era thanks to the enormous high-quality datasets delivered by Gaia and space asteroseismic and ground-based spectroscopic surveys. However, the current major challenge to reconstructing the chronology of the Milky Way is the difficulty to derive precise stellar ages for large samples of stars. The colour--magnitude diagram (CMD) fitting technique offers an alternative to individual age determinations to derive the star formation history (SFH) of complex stellar populations. Our aim is to obtain a detailed dynamically evolved SFH (deSFH) of the solar neighbourhood, and the age and metallicity distributions that result from it. We define deSFH as the amount of mass transformed into stars, as a function of time and metallicity, in order to account for the population of stars contained in a particular volume of the MW. We present a new package to derive SFHs from CMD fitting tailored to work with Gaia data, called CMDft.Gaia, and we use it to analyse the CMD of the Gaia Catalogue of Nearby Stars (GCNS), which contains a complete census of the (mostly thin disc) stars currently within 100 pc of the Sun. We present an unprecedentedly detailed view of the evolution of the Milky Way disc at the solar radius.The bulk of star formation started 11--10.5 Gyr ago at metallicity around solar, and continued with a slightly decreasing metallicity trend until 6 Gyr ago. Between 6 and 4 Gyr ago, a notable break in the age--metallicity distribution is observed, with three stellar populations with distinct metallicities (sub-solar, solar, and super-solar), possibly indicating some dramatic event in the life of our Galaxy. Star formation then resumed 4 Gyr ago with a somewhat bursty behaviour, metallicity near solar and average star formation rate higher than in the period before 6 Gyr ago. The derived metallicity distribution closely matches precise spectroscopic data, which also show stellar populations deviating from solar metallicity. Interestingly, our results reveal the presence of intermediate-age populations exhibiting both a metallicity typical of the thick disc, approximately $ M/H and super-solar metallicity. The many tests performed indicate that, with high-precision photometric and distance data such as that provided by Gaia CMDft.Gaia is able to achieve a precision of lesssim 10<!PCT!> and an accuracy better than 6<!PCT!> in the dating of stellar populations, even at old ages. A comparison with independent spectroscopic metallicity information shows that metallicity distributions are also determined with high precision, without imposing any a priori metallicity information in the fitting process. This opens the door to obtaining detailed and robust information on the evolution of the stellar populations of the Milky Way over cosmic time. As an example, we provide in this paper an unprecedentedly detailed view of the age and metallicity distributions of the stars within 100 pc of the Sun.
Metal-poor stars hold key information on the early Milky Way. Through the identification and characterisation of substructures, one can understand internal mechanisms (including merger and accretion events), which are indispensable to reconstruct the formation history of the Galaxy. To allow an investigation of a population of very metal-poor stars ( Fe/H < -1.7) with disc-like orbits (planar and prograde), high angular momenta ($L_z$/$J_ tot $ > 0.5) and rotational velocities ($V_ $) proposed in the literature, we used a sample of sim 3M giant stars with Gaia DR3 BP/RP information and Pristine-Gaia metallicities down to -4.0 dex that we aimed to decontaminate. To achieve this, we constructed a sample as free as possible from spurious photometric estimates, an issue commonly encountered for high $V_ metal-poor stars. We created a statistically robust sample of sim 36 000 Pristine-Gaia very metal-poor ( Fe/H < -1.7) giant stars, using APOGEE and LAMOST data (adding GALAH and GSP-spec for verification) to estimate and remove contamination. We investigated the spatial and kinematic properties of the decontaminated sample, making use of $V_ as well as the action space, which are both powerful tools to disentangle stellar populations. The global distribution of very metal-poor stars in our sample shows the typical kinematics, orbital properties, and spatial distributions of a halo; however, as in previous works, we found a pronounced asymmetry in the $L_z$ and $V_ distributions, in favour of prograde stars. We showed that this excess is predominantly due to prograde-planar stars (10 $<!PCT!>$ of the very metal-poor population), which can be detected down to Fe/H = -2.9 at a 2sigma confidence level. This prograde-planar population contains stars with $V_ $ and $Z_ max $ < 1.5\,kpc. While the overall orbital configurations max $ - $R_ max $ or action space distributions) of our sample match that of a halo, the highly prograde and planar subset (2 $<!PCT!>$ of the very metal-poor population) also bears characteristics classically associated with a thick disc: (i) a spatial distribution compatible with a short-scaled thick disc, (ii) a $Z_ max $ - $R_ max $ distribution similar to the one expected from the thick disc prediction of the Gaia Universe Model Snapshot, and (iii) a challenge to erase its signature assuming a stationary or prograde halo with $ V_ phi $ sim 30-40 km.s$^ $. Altogether, these results seem to rule out that these highly prograde and planar stars are part of a thin disc population and, instead, support a contribution from a metal-weak thick disc. Higher resolution spectra are needed to fully disentangle the origin(s) of the population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.