With an aging population, improvement in life expectancy, and significant increase in the use of bioprosthetic valves, structural valve deterioration will become more and more prevalent. The operative mortality for an elective redo aortic valve surgery is reported to range from 2% to 7%, but this percentage can increase to more than 30% in high-risk and nonelective patients. Because transcatheter aortic valve (TAV)-in-surgical aortic valve (SAV) implantation represents a minimally invasive alternative to conventional redo surgery, it may prove to be safer and just as effective as redo surgery. Of course, prospective comparisons with a large number of patients and long-term follow-up are required to confirm these potential advantages. It is axiomatic that knowledge of the basic construction and dimensions, radiographic identification, and potential failure modes of SAV bioprostheses is fundamental in understanding key principles involved in TAV-in-SAV implantation. The goals of this paper are: 1) to review the classification, physical characteristics, and potential failure modes of surgical bioprosthetic aortic valves; and 2) to discuss patient selection and procedural techniques relevant to TAV-in-SAV implantation.