2020
DOI: 10.1155/2020/8240168
|View full text |Cite
|
Sign up to set email alerts
|

Discrete Cosine Transformation and Temporal Adjacent Convolutional Neural Network-Based Remaining Useful Life Estimation of Bearings

Abstract: In recent years, several time-frequency representation (TFR) and convolutional neural network- (CNN-) based approaches have been proposed to provide reliable remaining useful life (RUL) estimation for bearings. However, existing methods cannot tackle the spatiotemporal continuity between adjacent TFRs since temporal proposals are considered individually and their temporal dependencies are neglected. In allusion to this problem, a novel prognostic approach based on discrete cosine transformation (DCT) and tempo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 11 publications
(5 citation statements)
references
References 44 publications
(47 reference statements)
0
4
0
1
Order By: Relevance
“…When applied to a noisy signal condition, DCT may effectively emphasize specific fault-induced frequencies, which helps with accurate problem identification and classification. DCT's compact energy description feature makes it possible to identify anomalies, wear, or failure mechanisms in equipment by extracting significant features from raw diagnostic data and analyzing them effectively [26]. As a result, using DCT in fault diagnosis procedures improves the precision and dependability of problem detection, enabling early warning systems and preventative maintenance procedures to reduce expensive downtime and equipment failures.…”
Section: Discrete Cosine Transform (Dct)mentioning
confidence: 99%
“…When applied to a noisy signal condition, DCT may effectively emphasize specific fault-induced frequencies, which helps with accurate problem identification and classification. DCT's compact energy description feature makes it possible to identify anomalies, wear, or failure mechanisms in equipment by extracting significant features from raw diagnostic data and analyzing them effectively [26]. As a result, using DCT in fault diagnosis procedures improves the precision and dependability of problem detection, enabling early warning systems and preventative maintenance procedures to reduce expensive downtime and equipment failures.…”
Section: Discrete Cosine Transform (Dct)mentioning
confidence: 99%
“…У роботі [5] наведено аналіз відеосигналу за допомогою швидкого перетворення Фур'є і вирахувано частоту миготіння вихрового пальника, що потім доведено емпірично. У роботі [6] за допомогою швидкого перетворення Фур'є було визначено частоти та амплітуди вібраційних сигналів від пневматично спарених турбін (одна -компресор, другавільного ходу) із сигналу від усієї системи, однак подальший аналіз був неможливим, оскільки по номограмі Фельдмана співвідношення частот та амлітуд двох сигналів є таким, що не дозволяє чітко їх розділити, тому остаточний аналіз не було проведено, що є недоліком. За допомогою короткочасного перетворення Фур'є у роботі [7] було показано зміни при переході від робочого до неробочого стану, а саме відбулися зміни, що призвели до того, що найбільшою амплітудою стала володіти не перша гармоніка, а п'ята.…”
Section: аналіз літературних даних та постановка проблемиunclassified
“…As the machinery industry is also moving towards the era of big data, deep learning is being widely used in fault diagnosis and life prediction of rotating machinery devices [25]. Many researchers have improved common deep learning models, such as CNN, long shortterm memory (LSTM), deep belief network (DBN) and generative adversarial networks (GANs), and have demonstrated good effectiveness in pattern recognition of rotating machinery [26][27][28][29][30][31]. The research results show that deep learning has broad application prospects in the field of mechanical equipment PHM.…”
Section: Introductionmentioning
confidence: 99%