Abstract:In this paper the robustness of a class of learning control algorithms to state disturbances, output noise, and errors in initial conditions is studied. We present a simple learning algorithm and exhibit, via a concise proof, bounds on the asymptotic trajectory errors for the learned input and the corresponding state and output trajectories. Furthermore, these bounds are continuous functions of the bounds on the initial condition errors, state disturbance, and output noise, and the bounds are zero in the absen… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.