The nonlinear dynamics of a bird-like flapping wing robot under randomly uncertain disturbances was studied in this study. The bird-like flapping wing robot was first simplified into a two-rod model with a spring connection. Then, the dynamic model of the robot under randomly uncertain disturbances was established according to the principle of moment equilibrium, and the disturbances were modeled in the form of bounded noise. Next, the energy model of the robot was established. Finally, numerical simulations and experiments were carried out based on the above models. The results show that the robot is more likely to deviate from its normal trajectory when the randomly uncertain disturbances are applied in a chaotic state than in a periodic state. With the increase of the spring stiffness under the randomly uncertain disturbances, the robot has a stronger ability to reject the disturbances. The mass center of the robot is vital to realize stable flights. The greater the amplitude of randomly uncertain disturbances, the more likely it is for the robot to be in a divergent state.