In the present paper, we introduce a class of F-stochastic operators on a finite-dimensional simplex, each of which is regular, ascertaining that the species distribution in the succeeding generation corresponds to the species distribution in the previous one in the long run. It is proposed a new scheme to define non-homogeneous Markov chains contingent on the F-stochastic operators and given initial data. By means of the uniform ergodicity of the non-homogeneous Markov chain, we define a non-homogeneous (quantum) entangled Markov chain. Furthermore, it is established that the non-homogeneous entangled Markov chain enables $$\psi$$
ψ
-mixing property.