We quantitatively examine the extent to which instanton degress of freedom, contained within standard Monte-carlo generated gauge-field configurations, can maintain the characteristic features of the mass and renormalisation functions of the non-perturbative quark propagator. We use overimproved stout-link smearing to isolate instanton effects on the lattice. Using a variety of measures, we illustrate how gauge fields consisting almost solely of instanton-like objects are produced after only 50 sweeps of smearing. We find a full vacuum, with a packing fraction more than three times larger than phenomenological models predict. We calculate the overlap quark propagator on these smeared configurations, and find that even at high levels of smearing the majority of the characteristic features of the propagator are reproduced. We thus conclude that instantons contained within standard Monte-carlo generated gauge-field configurations are the degrees of freedom responsible for the dynamical generation of mass observed in lattice QCD.