“…In the past couple of years, the PINN framework has been extended to solve complicated PDEs representing complex physics (Jin et al, 2021;Mao et al, 2020;Rao et al, 2020;Wu et al, 2018;Qian et al, 2020;Dwivedi et al, 2021;Nabian et al, 2021;Kharazmi et al, 2021;Cai et al, 2021a;Bode et al, 2021;Taghizadeh et al, 2021;Lu et al, 2021c;Shukla et al, 2021;Hennigh et al, 2020;Li et al, 2021). More recently, alternate approaches that use discretization techniques using higher order derivatives and specialize numerical schemes to compute derivatives have shown to provide better regularization for faster convergence (Ranade et al, 2021b;Gao et al, 2021;Wandel et al, 2020;He & Pathak, 2020). Differentiable solver frameworks for learning PDEs: Training NNs within differentiable solver frameworks has shown to improve learning and provide better control of PDE solutions and transient system dynamics (Amos & Kolter, 2017;Um et al, 2020;de Avila Belbute-Peres et al, 2018;Toussaint et al, 2018;Wang et al, 2020;Portwood et al, 2019).…”