1990
DOI: 10.1109/21.105092
|View full text |Cite
|
Sign up to set email alerts
|

Discretized pursuit learning automata

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
140
0

Year Published

2004
2004
2023
2023

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 147 publications
(141 citation statements)
references
References 16 publications
1
140
0
Order By: Relevance
“…In other words, the proofs of these results are already found in the literature, namely in [26] and in [23] respectively. The proofs are thus not repeated here.…”
mentioning
confidence: 54%
See 2 more Smart Citations
“…In other words, the proofs of these results are already found in the literature, namely in [26] and in [23] respectively. The proofs are thus not repeated here.…”
mentioning
confidence: 54%
“…The proofs for the convergence of PAs have been studied and reported for decades in [6], [23], [24], [25] [26], which, unfortunately, all have a common flaw that has been recently discovered by the authors of [27]. Further, the authors of [27] submitted a new proof for the convergence of the CPA which adequately rectified the flawed proofs.…”
Section: Proofs Of Pasmentioning
confidence: 98%
See 1 more Smart Citation
“…The initial motivation for discretizing LA was to increase their rate of convergence and to avoid the need for generating real numbers with arbitrary precision [17]. In continuous algorithms, since the action probability is updated by multiplying a constant 1 − λ, the probability of selecting the optimal action can only be approached asymptotically to unity, but never be actually attained.…”
Section: Discretized Bayesian Pursuit Algorithmmentioning
confidence: 99%
“…In practice, the relatively slow rate of convergence of these algorithms constituted a limiting factor in their applicability. In order to increase their speed of convergence, the concept of discretizing the probability space was introduced in [10][11][12]. This concept is implemented by restricting the probability of choosing an action to be one of a finite number of values in the interval [0,1].…”
Section: Introductionmentioning
confidence: 99%