O Brasil possui destaque mundial na produção de citros, e o Estado de São Paulo responde por mais de 80% da produção de laranja. Este fato, aliado à dificuldade de associação de padrão espectral a talhões de citros como um todo, faz com que estudos de técnicas de mapeamento de citros devam ser mais desenvolvidos no país. De forma geral, técnicas de classificação, mediante extração de multi-atributos por objeto, em imagens ópticas de sensoriamento remoto, têm demonstrado bons resultados. Algoritmos de árvores de decisão (AD), como o C 4.5, constituem métodos robustos para trabalhar com multi-atributos. O objetivo deste trabalho foi avaliar classificações de citros em imagens do sensor TM/Landsat-5, segundo duas abordagens: a) por AD a partir de valores de pixel; e b) por AD a partir de atributos de média e de multi-atributos por objeto. Usou-se um classificador mais usual, por máxima verossimilhança (Maxver), usando Mapas de Regras, como referência comparativa. As classificações geradas por AD apresentaram a melhor performance, com exceção da AD a partir de atributos de média por objeto. A classificação Maxver apresentou semelhança significativa com as melhores classificações geradas por AD. A classificação por AD gerada a partir de valores de pixel apresentou o melhor custo/benefício.