We report on establishing the polydispersity in chemical composition (PCC) and polydispersity in monomer sequence distribution (PMSD) in random copolymers of poly(styrene-co-4-bromostyrene) (PBr x S), where x = (0.385 ± 0.035) is the mole fraction of the 4bromostyrene units (4-BrS), prepared by electrophilic substitution of bromine in the para-position of the phenyl ring of the parent polystyrene. Upon fixing the total number of repeating units, we tune the distribution of styrene and 4-BrS segments in PBr x S by carrying out the bromination reaction on polystyrene homopolymers in different solvents. While PBr x S with relatively random comonomer distribution is prepared in 1-chlorodecane, random-blocky sequences of 4-BrS in PBr x S are achieved by carrying out the bromination reaction in 1-chlorododecane. The PCC in both copolymers is established by fractionating both polymers using interaction chromatography (IC) and determining the chemical composition of the individual fractions by neutron activation analysis (NAA). The NAA data along with IC experiments reveal that the random-blocky sample possesses a narrowed PCC relative to a specimen with a more random comonomer sequence distribution. The full width at halfmaximum (fwhm) in the chemical composition profile from IC is used to quantify PCC; the random mother sample possessed a 25% fwhm, while the random blocky mother sample has a fwhm equal to 8.7%. The change in the adsorption enthalpy per brominated segment due to adsorption is determined to be ≈1.5 times greater for the random-blocky than the relatively random sample, proving that more pronounced cooperative adsorption occurs in the case of the random-blocky sample relative to the random copolymer sample. Computer simulation employing the discontinuous molecular dynamic scheme further reveals that the distribution of comonomer sequences, that is, PMSD, in the random-blocky copolymer is narrower than that in the copolymer with a random distribution of both monomers.