2006
DOI: 10.1007/11940098_15
|View full text |Cite
|
Sign up to set email alerts
|

Discrimination-Based Feature Selection for Multinomial Naïve Bayes Text Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
1

Year Published

2010
2010
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(6 citation statements)
references
References 6 publications
0
5
0
1
Order By: Relevance
“…Metin işleme uygulamalarında boyut indirgeme için genellikle öznitelik seçim yöntemleri tercih edilmektedir. En bilinen ve en çok kullanılan öznitelik seçimi algoritmaları arasında belge frekansı (document frequency), chi istatistiği (chi statistic), bilgi kazanımı (information gain), terim dayanıklılığı (term strength) ve karşılıklı bilgi (mutual information) yer alır [4]. Sayılan yöntemlerin hepsi filtre yöntemlerdir ve öznitelikleri birbiriyle benzeşen entropi temelli değer hesabına göre süzerler.…”
Section: öZnitelik Seçim Yöntemleriunclassified
“…Metin işleme uygulamalarında boyut indirgeme için genellikle öznitelik seçim yöntemleri tercih edilmektedir. En bilinen ve en çok kullanılan öznitelik seçimi algoritmaları arasında belge frekansı (document frequency), chi istatistiği (chi statistic), bilgi kazanımı (information gain), terim dayanıklılığı (term strength) ve karşılıklı bilgi (mutual information) yer alır [4]. Sayılan yöntemlerin hepsi filtre yöntemlerdir ve öznitelikleri birbiriyle benzeşen entropi temelli değer hesabına göre süzerler.…”
Section: öZnitelik Seçim Yöntemleriunclassified
“…Feature extraction method creates a subset of new features by combination of existing features, while feature selection method chooses a subset of all features that is more informative (more relevant to the target class). Both are utilized as a preprocessing stage for classification to improve its accuracy, reduce memory space and processing time required for classification and to reduce the cost of gathering data, noting that irrelevant features could be represented as a noisy feature that could decrease the accuracy of the classification process [13].…”
Section: Dimensionality Reductionmentioning
confidence: 99%
“…On the other hand feature selection methods are divided into two types: univariate and multivariate feature selection methods. Univariate methods evaluate the relevance of features individually where it provides the discriminatory power (ability of the feature to discriminate between different classes) of the feature [13], each feature is considered individually at a time. An example of univariate methods is CHI Square method and Mutual information MI method [16] which measures the dependency between each feature f and the target class c Where f and c are independent if: P(f, c) = P(f) P(c).…”
Section: Dimensionality Reductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Recently, a large number of scholars have studied text classification. Traditional classification algorithm models include K -nearest neighbor (KNN) [ 11 ], naive Bayes (NB) [ 12 ], and support vector machine (SVM) [ 13 ]. These models have good classification results and have been widely used.…”
Section: Introductionmentioning
confidence: 99%