N. (2015). A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal, 469(3), 375-389. DOI: 10.1042/BJ20150390
1
A RECYCLING PATHWAY FOR CYANOGENIC GLYCOSIDES EVIDENCED BY THE COMPARATIVE METABOLIC PROFILING IN THREE CYANOGENIC PLANT SPECIES
ABSTRACTCyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic HCN upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and HR-MS complemented by ion-mobility mass spectrometry was carried out in three cyanogenic plant species: cassava, almond and sorghum. In total, the endogenous formation of 36 different chemical structures related to the cyanogenic glucosides linamarin, lotaustralin, prunasin, amygdalin and dhurrin was discovered, including di-and triglycosides derived from these compounds. The relative abundance of the compounds was assessed in different tissues and developmental stages. Based on results common to the three phylogenetically unrelated species, a potential recycling endogenous turnover pathway for cyanogenic glycosides is described in which reduced nitrogen and carbon are recovered for primary metabolism without the liberation of free HCN. Glycosides of amides, carboxylic acids and anitriles derived from cyanogenic glycosides appear as common intermediates in this pathway and may also have individual functions in the plant. The recycling of cyanogenic glycosides and the biological significance of the presence of the turnover products in cyanogenic plants open entirely new insights into the multiplicity of biological roles cyanogenic glycosides may play in plants.Abbreviations: HR-MS, high-resolution mass spectrometry; EIC, extracted ion chromatogram; IM-MS, ionmobility mass spectrometry; ATD, arrival time distribution; CID, collision-induced dissociation
2
SUMMARY STATEMENTA potential recycling pathway for cyanogenic glycosides is presented wherein reduced nitrogen and carbon are recovered for primary metabolism without HCN liberation. Common types of glycosylated pathway intermediates were found in three cyanogenic plant species: cassava, almond and sorghum.