“…In recent years, machine vision-based deep learning methods have provided advanced and efficient image processing solutions in agriculture. Deep learning methods, combined with machine vision technology, have been widely used in plant disease and pest classification, including the classification of fresh tobacco leaves of various maturity levels ( Chen et al., 2021 ); the classification of tobacco plant diseases ( Lin et al., 2022 ); the classification of wheat spike blast ( Fernández-Campos et al., 2021 ); the classification of rice pests and diseases ( Yang et al., 2021 ); the detection of plant parts such as tobacco leaves and stems ( Li et al., 2021 ); the detection of tomato diseases ( Liu et al., 2022 ); the detection of wheat head diseases ( Gong et al., 2020 ); the detection of brown planthoppers in rice ( He et al., 2020 ); plant image segmentation, such as tobacco planting areas segmentation ( Huang et al., 2021 ); field-grown wheat spikes segmentation ( Tan et al., 2020 ); rice ear segmentation ( Bai-yi et al., 2020 ; Shao et al., 2021 ); rice lodging segmentation ( Su et al., 2022 ); photosynthetic and non-photosynthetic vegetation segmentation ( He et al., 2022 ); weed and crop segmentation ( Hashemi-Beni et al., 2022 ); and wheat spike segmentation ( Wen et al., 2022 ). Deep learning methods combined with machine vision technology have been utilized in research focused on the classification of tobacco shred images.…”