2020
DOI: 10.48550/arxiv.2010.12888
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Discriminative feature generation for classification of imbalanced data

Abstract: The data imbalance problem is a frequent bottleneck in the classification performance of neural networks. In this paper, we propose a novel supervised discriminative feature generation (DFG) method for a minority class dataset. DFG is based on the modified structure of a generative adversarial network consisting of four independent networks: generator, discriminator, feature extractor, and classifier. To augment the selected discriminative features of the minority class data by adopting an attention mechanism,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?