2023
DOI: 10.1038/s41598-023-48177-3
|View full text |Cite
|
Sign up to set email alerts
|

Discriminative machine learning for maximal representative subsampling

Tony Hauptmann,
Sophie Fellenz,
Laksan Nathan
et al.

Abstract: Biased population samples pose a prevalent problem in the social sciences. Therefore, we present two novel methods that are based on positive-unlabeled learning to mitigate bias. Both methods leverage auxiliary information from a representative data set and train machine learning classifiers to determine the sample weights. The first method, named maximum representative subsampling (MRS), uses a classifier to iteratively remove instances, by assigning a sample weight of 0, from the biased data set until it ali… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?