Plum fruit and kernels offer bioactive material for industrial production. The promising procedure for distinguishing plum kernel cultivars used in this study comprised two stages: image analysis to compute the texture parameters of plum kernels belonging to three cultivars ‘Emper’, ‘Kalipso’, and ‘Polinka’, and discriminant analysis using machine learning algorithms to classify plum kernel cultivars based on selected textures with the highest discriminative power. The discriminative models built separately for sets of textures selected from all color channels L, a, b, R, G, B, U, V, S, X, Y, Z, color space Lab and color channel b using the KStar (Lazy), PART (Rules), and LMT (Trees) classifiers provided the highest average accuracies reaching 98% in the case of the color space Lab and the KStar classifier. In this case, individual cultivars were discriminated with the accuracies of 97% for ‘Emper’ and ‘Kalipso’ to 99% for ‘Polinka’. The values of other performance metrics were also satisfactory, higher than 0.95. The ROC curves were quite smooth and steady with the most satisfactory curve for the ‘Kalipso’ kernels. The present study sheds light on an objective, non-destructive, and inexpensive procedure for cultivar discrimination of plum kernels.