2022
DOI: 10.1155/2022/2809222
|View full text |Cite
|
Sign up to set email alerts
|

Discriminative Similarity-Balanced Online Hashing for Supervised Image Retrieval

Abstract: When virtualizing large-scale images of the real world, online hashing provides an efficient scheme for fast retrieval and compact storage. It converts high-dimensional streaming data into compact binary hash codes while saving the structural characteristics between samples into the Hamming space. Existing works usually update the hashing function based on the similarity between input data, or design a codebook to assign code words for each single input sample. However, assigning code words to multiple samples… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 47 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?