We provide an introduction of the functioning, implementation, and challenges of convolutional neural networks (CNNs) to classify visual information in social sciences. This tool can help scholars to make more efficient the tedious task of classifying images and extracting information from them. We illustrate the implementation and impact of this methodology by coding handwritten information from vote tallies. Our paper not only demonstrates the contributions of CNNs to both scholars and policy practitioners, but also presents the practical challenges and limitations of the method, providing advice on how to deal with these issues.