A theoretical investigation is made to study the way in which thermal distortion of bearing components modifies the characteristics of journal bearings. The thermoelastic treatment developed is two-dimensional and incorporates an existing thermohydrodynamic analysis. It is applied to circular and partial arc bearings for a range of parametric groups governing the bearing operation. The results show that for a fixed journal position, the effect of thermal distortion is to reduce the minimum film thickness, increase the load capacity, increase the peak temperatures and pressures, and also to enhance considerably the stability of the bearing. The effects are more marked for larger oil-lubricated bearings and higher speeds of operation and it is suggested that discrepancies observed between experimental results and existing theory could be largely explained by this phenomenon.