Humoral immunity allows the body to mount a defense against pathogens and foreign substances, and to respond with memory to subsequent exposures. The molecular participants may also recognize selfstructures, leading to attack on the body and autoimmune disease. The main players in humoral immunity are antibody-producing B lymphocytes, and several classes of T lymphocytes. This review deals with the molecular details of recognition of antigens by soluble antibodies, and of substances presented to receptors on the surfaces of T cells (TCRs). The prototype antibody consists of a dimer of dimers, two heavy (H) chains and two light (L) chains, with antigen recognition capacity lying in variable "head" regions of an H-L pair. Most crystallographic studies are done with this substructure, called a F ab fragment, bound in a soluble antigen complex. Homologous to this arrangement, the prototype TCR consists of two chains (α and β) that complex not soluble antigen, but usually a short peptide or other small molecule presented by proteins of the major histocompatibility complex. In each case a general background on the historical development of understanding the molecular recognition interface is given, followed by a number of examples of crystal structures from the recent literature that have allowed us to refine our understanding of the complex recognition process. Variations on the prototypical structures are also considered. The spectrum of recognition strategies involves interplay of lock-and-key with flexibility, varying degrees of entropic and enthalpic contributions, surface shaping by entrapped water molecules, and combinations of stabilizing hydrogen bonding, electrostatic interactions, salt bridging, and van der Waals forces. Preeminent in the recent literature are details of antibody binding to influenza A and human immunodeficiency viral antigens. Both viral antigens and attempts to understand autoimmunity are prominent in the recent TCR literature.