Purpose
The research is to improve the efficiency and accuracy of recognition of honeycomb lung in CT images.
Methods
Deep learning methods are used to achieve automatic recognition of honeycomb lung in CT images, however, are time consuming and less accurate due to the large amount of structural parameters. In this paper, a novel recognition method based on MobileNetV1 network, multiscale feature fusion method (MSFF), and dilated convolution is explored to deal with honeycomb lung in CT image classification. Firstly, the dilated convolution with different dilated rate is used to extract features to obtain receptive fields of different sizes, and then fuse the features of different scales at multiscale feature fusion block is used to solve the problem of feature loss and incomplete feature extraction. After that, by using linear activation functions (Sigmoid) instead of nonlinear activation functions (ReLu) in the improved deep separable convolution blocks to retain the feature information of each channel. Finally, by reducing the number of improved deep separable blocks to reduce the computation and resource consumption of the model.
Results
The experimental results show that improved MobileNet model has the best performance and the potential for recognition of honeycomb lung image datasets, which includes 6318 images. By comparing with 4 traditional models (SVM, RF, decision tree, and KNN) and 11 deep learning models (LeNet‐5, AlexNet, VGG‐16, GoogleNet, ResNet18, DenseNet121, SENet18, InceptionV3, InceptionV4, Xception, and MobileNetV1), our model achieved the performance with an accuracy of 99.52%, a sensitivity of 99.35%, and a specificity of 99.89%.
Conclusion
Improved MobileNet model is designed for the automatic recognition and classification of honeycomb lung in CT images. Through experiments comparative analysis of other models of machine learning and deep learning, it is proved that the proposed improved MobileNet method has the best recognition accuracy with fewer the model parameters and less the calculation time.