Whereas considerable data have been generated about the pathophysiology of pain processing during migraine attacks, relatively little is known about the neural basis of sensory hypersensitivity. In migraine, the term "hypersensitivity" encompasses different and probably distinct pathophysiological aspects of sensory sensitivity. During attacks, many patients have enhanced sensitivity to visual, auditory and/or olfactory stimuli, which can enhance headache while interictally, migraineurs often report abnormal sensitivity to environmental stimuli that can cause nonpainful discomfort. In addition, sensorial stimuli can influence and trigger the onset of migraine attacks. The pathophysiological mechanisms and the origin of such sensitivity (individual predisposition to develop migraine disease or consequence of repeated migraine attacks) are ill understood. Functional neuroimaging and electrophysiological studies allow for noninvasive measures of neuronal responses to external stimuli and have contributed to our understanding of mechanisms underlying sensory hypersensitivity in migraine. The purpose of this review is to present pivotal neuroimaging and neurophysiological studies that explored the basal state of brain responsiveness to sensory stimuli in migraineurs, the alterations in habituation and attention to sensory inputs, the fluctuations of responsiveness to sensory stimuli before and during migraine attacks, and the relations between sensory hypersensitivity and clinical sensory complaints.